Pro-Lie groups which are infinite-dimensional Lie groups
نویسندگان
چکیده
منابع مشابه
Infinite Dimensional Lie Groups
Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...
متن کاملRegular Infinite Dimensional Lie Groups
Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملLarge automorphism groups of 16-dimensional planes are Lie groups
It is a major problem in topological geometry to describe all compact projective planes P with an automorphism group Σ of sufficiently large topological dimension. This is greatly facilitated if the group is known to be a Lie group. Slightly improving a result from the first author’s dissertation, we show for a 16-dimensional plane P that the connected component of Σ is a Lie group if its dimen...
متن کاملInfinite-Dimensional Lie Groups and Algebras in Mathematical Physics
We give a review of infinite-dimensional Lie groups and algebras and show some applications and examples in mathematical physics. This includes diffeomorphism groups and their natural subgroups like volume-preserving and symplectic transformations, as well as gauge groups and loop groups. Applications include fluid dynamics, Maxwell’s equations, and plasma physics. We discuss applications in qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society
سال: 2009
ISSN: 0305-0041,1469-8064
DOI: 10.1017/s030500410800128x